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Abstract. The problem of three-dimensional potential flow past a thin rigid screen is reduced to a hypersingular
boundary integral equation. This equation is then projected onto a flat reference screen, which is taken to be a
circular disc. Solutions are obtained for screens that are axisymmetric perturbations from the disc, so that the
screen is rippled concentrically. The added mass is calculated for axisymmetric flow past such screens, correct to
second order.
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1. Introduction
Lamb’sHydrodynamicgives the added mass of a flat circular disc as [1, Section 108]
Mo = 8pa®, 1)

where the disc has radiusand is moving perpendicular to its plane through an incompressible
inviscid fluid of densityp. Herein, we calculate corrections A, when the disc is perturbed
out of its plane into a wrinkled surface. Specifically, we considetippled discs meaning
that the disc perturbation is axisymmetric. Thesis given by

Qz=¢ef(r), 0<r<l —nwm<b<m,

where(r, 0, z) are cylindrical polar coordinateg;, is a given smooth function of one variable,
ande is a small dimensionless parameter. We suppose that the serganslates with con-
stant speed’/ along thez-axis, so that the resulting boundary-value problem for a velocity
potential ¢ is axisymmetric. (Equivalently, we can hold fixed in a uniform flow in the
negativez-direction.)

It turns out that the added mass is given by

M= My+e’My+---,

for anywrinkled disc2 (not merely rippled discs) whef? translates along the-axis. (For

other translation directions, this result remains true for rippled discs, but, in general, the cor-
rection toMjy is first order ing.) Consequently, we have to work to second order if we want
to obtain a non-trivial correction. We shall develop a method for carrying out this calculation,
and present detailed results for quartic surfaces given by

7= %ezrz(l— %crz), 0<r<l1l —nm<b<m,
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wherec is a parameter. For this two-parameter family of surfaces, we find that
M = 5p{1+ 5£°B — P + FcA), @

with an error ofO (¢%). In particular, wherr = 0, we recover a result in agreement with the
exact solution due to Collins [2] for a spherical cap. The generalization of (2) for translations
in other directions is given in Section 6.

There are other methods in the literature with a similar general aim. However, these are
limited to first-order calculations (which are either trivial or can be performed explicitly for
any f) or they are defective in some way. To put these remarks in context, let us begin by
recalling that the classical problem of potential flow past a flat circular disc can be solved
exactly by the method of separation of variables in oblate spheroidal coordinates [1] or by
recasting the problem as a mixed boundary-value problem in a half-gpad®[3]. Attempts
have been made to adapt the latter methodology to problems for whisha non-planar
perturbation of a circular disD.

Jansson [4] imagine€ to be a piece of an infinite interface separating two half-spaces,
and then perturbed this transmission problem about the flat interface. (This is analogous to
the theory of small-amplitude water waves [5, Chapter 2] and to the theory of scattering by
slightly rough surfaces [6, Chapter 3].) However, the behaviour of the solution near the edge
of © induces spurious singularities at the edgeéof

Beom and Earmme [7] began with assumed representatioigs famely

¢ = /OO As(§)Jor) €77 dE for +z > ef, 3
0

motivated by the use of such representations for flat discs [3, Chapter 3]. However, we can see
that there will be points nede for which one of (3) will diverge.

In a previous paper [8], we began be reducing the exact boundary-value problem to a
hypersingular integral equation fas], the discontinuity in the potential acro€s We rewrote
this equation by projecting onto the unperturbed (reference) surface, which is thB.disc
This is an exact reformulation of the original boundary-value problem. Next, we introduced
perturbation expansions, leading to a sequence of hypersingular boundary integral equations
of the formHw,, = b, where

(0] = wo + sw1 + 2wp + - - -

and H corresponds to potential flow past a rigid circular disc. We derived an explicit closed-
form expression for the first-order correctian. We also derived explicit results farg, w1

andw, for two particular geometries, namely, an inclined flat elliptical screen and a spherical
cap. We calculated the added mass for these flows, and found agreement with known exact
solutions.

The calculations in [8] are based on two-dimensional integral equations, and do not assume
any symmetries in the geometry or the ambient flow. However, the second-order calculations
are difficult. In this paper, we investigate axisymmetric problems with similar methods, in or-
der to see whether this restricted class of problems allows second-order calculations to proceed
more readily. The axial symmetry leads to one-dimensional hypersingular integral equations
with kernels involving complete elliptic integrals. Their analysis is quite different from that
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described in [8]; in particular, we make essential use of certain integral representations of the
complete elliptic integrals.

A second motivation for this study is as a model for other more complicated but more
important physical applications. Thus, the basic methodology (hamely, formulate an exact
boundary integral equation, project exactly onto a reference surfacé¢handhtroduce a
regular perturbation expansion) has wide applicability, and it will succeed whenever one can
solve the underlying boundary integral equation for the reference surface. For example, we
can cite problems of Stokes flow [9, 10], where small obstacles are immersed in a viscous
fluid (so that the Reynolds number is small); a lengthy analysis of such a flow past a per-
turbed sphere is given in [9, Section 5-9]. For another example, we can cite crack problems in
elasticity theory; these are important because they arise in theories of crack stability and quasi-
static propagation. Applications of the methodology described herein to problems involving
perturbed penny-shaped cracks are currently being made. In-plane perturbations of circular
discs and cracks are analysed in [11, 12].

2. Formulation
Let © be a thin rigid screen, defined by
Qiz=F(x,y), (x,y) € D,

where(x, y, z) are Cartesian coordinateB, is theunit discin the xy-plane, andF is a given
smooth function; later, we shall restrigtto be a function of = ,/x2 + y2. The problem is
to solve Laplace’s equation

2  3%p 3%
— 4+ =4+ L =0,
ax2  9y? 972

in the unbounded region exterior &, subject to

09 0o _

0 Q 4
on on on ()

andg = O(R;') asRz — oo, whereR2 = r? + z2, ¢ is the velocity potential of the given
ambient flow, and/dn denotes normal differentiation. We also require that bounded
everywhere in the flow.

It is known thatgp can be represented as a distribution of normal dipoles

1 a
¢(P) =~ /[d’(CI)]—G(P, q) dSg, (5)
T Jo an

q

whereG(P, q) = |r — q|™%, ¢ € Q has position vectog with respect to the origim®, and P
has position vector. Furthermore, denote the two sidessoby Q* and2~, and define the
unit normal vector o2, n, to point fromQ* into the fluid. Then, we define the discontinuity
in ¢ acrosx2 by

[¢(@)] = lim ¢(Q) — lim ¢(Q0),
0—q* 0—q
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whereq € Q, g% € Q* andQ is a point in the fluid.
Applying the boundary condition (4) to (5), we obtain

32 3
G(p’CI)dSq :_ﬂ’ [)EQ, (6)

1
— X [¢(q)] on,

47 Jo on,on,

which is the governing hypersingular integral equation . [The integral in (6) must be
interpreted in the finite-part sense. Also, (6) must be solved subjgei(to] = O for all
g € 92, the edge of2. More information on (6) and its derivation, and on two-dimensional
finite-part integrals can be found in [12] and [13].

Let us define a normal vector @ by

—0F —0F
N == N 1 )
ox dy

whencen = N/|N| is a unit normal vector; this effectively specifi@s . Suppose thap €
andqg € Q are at(xo, yo, zo) and(x, y, z), respectively. Let

[#(@)] = w(x,y).

Then, we can project (6) ontb. Thus, using. = F(x, y) andzg = F(xo, yo), We rewrite (6),
exactly, as an integral equation over8],

1
4—][ K (x0, yo; x, y)w(x, y) dA = b(xo, yo), (x0, yo) € D, (7)
7T Jp
where dA = dx dy,
K = R*(N(p)-N(@)} — 3R >(N(p) - R)(N(q) - Ry), (8)

Ry = (x — X0,y — Yo, F(x,y) — F(xo, y0)), R1 = | R4/, and
b(x,y) = —N - gradgo. 9

Equation (7) is to be solved subject to the edge conditign, y) = O forr = 1.
In the sequel, we take

¢o=—Uz whence b=U.

We will then calculate an approximation #pby solving (7). The added mass itself is given
exactly by [8]

M = —E/ w(x,y)dA; (20)
UJp

this formula comes by noting that, by definitiofi,= %MUZ, whereT is the kinetic energy
of the fluid motion [1, Section 44]. Exact solutions fdrare known whers2 is a flat circular
disc, a flat elliptical screen and a spherical cap; see [8] for references.
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3. Axisymmetric problems: rippled discs
Assume thag2 is given by

Q:z=F@r), 0<r<l, -n<6<m.

Thus € is circularly symmetric - it is rippled. A®y, = —U z, the solutionw is independent
of 6
w(x,y) =w(r).

Then, the two-dimensional integral Equation (7) becomes
1 1
—][ Lo, Nwr)rdr=U, 0<rg<1 (12)
4 0

This is a one-dimensional hypersingular integral equationdsf@n; it is to be solved subject
tow(l) = 0. The integral in (11) is a Hadamard finite-part integral. The kernel is given by

L(ro,r) = | K(xo, Yo; X, y) 06, 12)
-7
wherex = r cos0, y = r sinf, xo = ro C0S6y andyg = rq Sin .

It is well known that the standard boundary integral equations of axisymmetric potential
theory can be reduced to one-dimensional integral equations in which the kernels involve
complete elliptic integrals [14, 15]. The present situation is no exception, as we shall see.

In the Appendix, it is shown that

L = 33(rro) ¥2(19 — F'F{13) — 3 (rro) >2(A IS — BI2 + CI2), (13)
whereF = F(r), Fo = F(ro), F' = F'(r), F), = F'(rg),

7/2  cos 6 do

I" = 1" (k) = , 14
m =) /o (1 — K2 sin? gym/2 (1)
A = (F — Fo)* + (F — Fo)(Fro — F'r) — 3F'Fyrro, (15)
B = (F — Fo)(F'ro — Fyr) + F'Fy(r® + rd), (16)
G:_%F/Férro (17)
and
4rr
2 0
K= : 18
(r +ro)? + (F — Fp)? (18)
note that
2 4rrg 4rrg

= <
S (r+r0)2 (r—ro)2+4rrg
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with «? = 1 only whenr = r.

The integrald” can be expressed in terms of complete elliptic integrals whéhan odd
integer [16, Section 2.58]

130) = K 2E k),

13(k) = K'"2(1 — 2k~2)E(k) + 2k 2K (k),

(k) = k42— k*E (k) — 3k °K (k),

Ig(k) = —2(kk®)"2(1 — k> + KN E (k) + 1(kk') 22 — kKK (),

12(k) = —5(kk')™*(8 — 12k + 2k* + k) E(k) + 3(k°k')"2(16 — 16K — k") K (k),

wherek’? = 1 — k? and the complete elliptic integrals andK are defined by
/2 7)2
E(k) = / (1—k%sir? 9)Y2d9 and K (k) = / (1— k2 sir? 0)"Y2dp,
0 0

respectively.
3.1. THE FLAT DISC

If @ is flat and lies parallel to they-plane,F = Fy. Hence,F' = F;=0,A=8=C =0
andx = k, where

5 4rrg

=—. 19
(r + ro)? (19)
Thus the kerneL simplifies to
_ 4 E(k)
L = 1K3 G219k = — 20
o(ro, ) > (rro) 3( ) r+ro(r—ro)2 ( )
and the integral equation (11) reduces to
1 (rE
_][r (k) w(r)dr U O0<r<l 21)
m Jo r+ro(r —rp)?

with w(1) = 0; here, we have used

_(r—r)?

K2=1— 2= L0
(r 4+ ro)?

The hypersingular integral equation (21) for axisymmetric potential flow past a rigid flat
circular disc seems to be new, although it can be extracted from [15, Equation (6)]. (It also
yields the crack-opening displacemenfor a pressurized penny-shaped crack.)

Asr — ro, k — 1 andE(1) = 1, so that-Lo(ro, ) exhibits the basic hypersingularity in
one dimension, namely — ) 2.
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The flat-disc integral equation (21) can be solved exactly, using several different methods.
Thus, if we replace the constatiton the right-hand side by a given functiétrg), we have

-4 ! 1 " b(s)s ds
w(r)_F./r. «/tz—rZ/O «/tz—szdt’ (22)

for a derivation of this result, see, for example, [17] or [18]. In particular, wheh = U, we
obtainw(r) = —(4/7)U~/1 — r2.

3.2. THE SINGULARITY OF THE KERNEL

We are interested in the singularity of the keriighg, r) as|r — ro| — O, for anyF(r). Let
us define

R=r—ry and A= (F— Fy)/R,
so thatA is bounded for alR. In particular,A — Fgyasr — ro. It follows that

K/Z =1-— K2 — R2(1+ AZ)
N (r +ro)2 4+ R2A?’

whencex’ — 0 asR — 0. In this limit, the complete elliptic integrat is singular:K (x) ~
log(4/«’) ask’ — 0.

A cursory glance aL suggests a very strong singularity, due to the terms contaitfirfy
in 1Z (x). However, various cancellations occur. To see this, all quantities must be expanded
for small R. Expanding about, we havex’? ~ 1org2R? asR — 0, wherefy = 1+ F§.
For the first term in (13), we have

%K3(rro)_(3/2)(1§ — F’F(’)I?%) ~ %ro_3ﬁolc’_2
~ (2/r))R™?> as R — 0, (23)

thus, this term reduces to the flat-disc kernel for smRalas seen in (20).
For the second term in (13), we have

A~ —3D + RroFjh,

B ~ 2D + R?*ryF}B,

C~ —1D+ R*oF)C
asR — 0, where

D = roFé{roFé + R(Fé + I"oFé’)},

1 _ 5 o 3 "
A = _EFO — ZI"OF s
B = 3F! + roFY,

o _lpn 1 "
C=—35F —3roly,
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F{ = F"(ro) and Fy’ = F" (rg); thus, D, which is common te4, 8 andC, contains all the
terms inR® and R®. Then

AL — BIZ+ CIZ ~ DOy + R*roFY(AIY — BIs + CI?)

= D Q1+ R*roFy(F§ Q> + iroFy' Qv),

where
Q1 = —31 —2Ig — 312
= A+ kHEK) — 372+ kDK (k),
0 2
Q2 = _215 — 35— %15

= 2(k%) 24+ k% — 6kHE(k) — 3c (4 + 3P K (k),
whenceQ; ~ 4logk’ andQ, ~ —%K/_Z ask’ — 0. It follows that the second term in (13) has

a logarithmic singularity, so thdt has a dominant singularity given by (23), with additional
(weaker) logarithmic terms.

4. Slightly rippled discs

The hypersingular integral equation (11) is exact. It is valid for axisymmetric flow past any
rippled disc, and it could be solved numerically. Here, we suppose that the ripples are small,
and write

F(r)=¢f(r),
wheree is a small dimensionless parameter aghds independent of. Then we look for
approximate solutions of (11), valid for small

It turns out that

L=Lo+&’L+ 0(¢% ase— 0, (24)

whereL, is the flat-disc kernel given by (20) arig is given by (25) below. To obtain (24),
we start by setting

A=¢er with A=

1) — fro) ;f(m) and R=r—ro.

Next, writeL = LD + L@ where
LY = 33(rro) (k) and L® =L - LY.
For smalle, we have

Kk =k—e%+0@" with §=213(f — f0)%/(rro),
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wheref = f(r), fo = f(ro), k is defined by (18) and is defined by (19)L? is quadratic
in F(r) and F'(r), whence its contribution té., will come by replacingF’ by f and« by k.
For L®, we must take account of the difference betweemdk; this gives

e2(f — fo)’k® { 2

(€N — = J ) __
L (r07 r) - LO(rOa r) 16k/2(rr0)5/2 k/2

(2 — kK> E(k) — K(k)} .

Finally, simplification gives

-2 S1E (k) SoFE (k) S3K (k)
L = 2
2(ro. 7) r+ro{(r—r0)2+(r+ro)2+(r+ro)2}’ #)
where
2 2
Sp = 6r2 —An(f' + f3) + g I for
rro
Sp = 612 — 4A(r + o) <f — fo) :
r —rp

’ / 2
= B2 A+ r0) <f ro+for> _ (r+ro) 8

rro rro

f/ = f'(r) and fj = f'(ro). Note that the apparent hypersingularity in (25) is removable
becauseS; = O(R?) asR — 0.

Having expanded the kernel for smajlwe next expana as

w(r) = wo+8w1+82w2+~~~.
Then, (11) gives

Lwog=U, Lws =0, and Lwy = by,

where.L£, defined by

g 1 (YE®) w(r)dr
(Lw)(rg) = mﬁ Folro. w(rrdr = ;][0 rtro(r—ro?

is the basic hypersingular operator for axisymmetric potential flow past a rigid circular disc
1 1
by = —Lowg and (Low)(rg) = 4—/ Lo(rg, r)w(r)r dr.
T Jo
It follows immediately that
4
wo(r) = — (;) Uv1—7r2 and wi=0.

Forw,, we can foresee that the most difficult part of the calculation will involve the evaluation
of b, = —Lowp. In the next section, we describe this calculation for a certain quartic sur-
face f.
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Finally, we can calculate the second-order correction to the added mass from (10)

1
M; = —@/ wa(r)r dr. (26)
U Jo

But the solution ofLw, = b, is given by (22) as

—4 1 1 " by(s)s ds
wo(r) = ?/; \/t2 — /O \/52 — dr. (27)

Substituting this expression in (26), and interchanging the order of integration twice, we obtain

1
M, = %O f sv'1— s2by(s) ds, (28)
0

which avoids an explicit calculation a#.

5. Arippled quartic surface
Consider a quartic surface given by
z=c¢f(r) with f(@r)=3L-1%cr), 0<r<1l, -n<6<m, (29)
wherec is a parameter. Thug' = r — cr3,
A= 30 +ro){l— Lctr? +1d),
S1=(@r— ro)z{% + %c(r2 +4rro +18) — %cz(r2 +r3)(5r2 4+ 12rny + 5r2)),
So = (r +ro)*{—3 + 3¢(Br® + 4rro + 3r§) — 3c2(r® + r§)(5r° + 8rro + 5rd)},
S3=(r+ ro)z{—?1 + %c(r2 + rg) + %Scz(r4 — 14r2r§ + ré)},
whence
Lo(ro,r) = —4c{l— 3c(r® + r§)}(r + ro) E(k)

+(3 = 3c(? + 1) — 520 = 14205 + 1)} 4+ ro) K (k).

The next step is to evaluatg; we have

U 1
ba(ro) = —(L2wo)(ro) = ;/ La(ro, r)v/1—r?rdr.
0
The difficulty is thatr occurs throughk (defined by (19)) in the argument of the complete
elliptic integrals. We proceed indirectly by using certain integral representations [19, p. 249]

K (k)
r+ro

=ir / Jo(rt) Jo(rot) dr,
0
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K (k)

(r +ro)E(k) = (r* + rg)r e

o0
— nrro/ Ji(rt) J1(rot) dt,
0
whereJ, (x) is a Bessel function. These give

o0
Ly, = m(ar + a2r3) / Ji(rt) J1(rot) df + 7 (a3 + a4r2 + a5r4)
0

o
X / Jo(rt) Jo(rot) dt,
0
where
o1 = 4erg(1— gcrg), oy = —%czro,

az = (12— 44ci +198r8),  aq= E(=22c+2781)

andas = 12¢2. So, if we define

1
47 () = / L= 2,
0
we see that

U o0
ba(rg) = ;/0 J1(rot) (192 + g7 dt

U [
= [ dotronaagh + sl + asgd) .
The integralsg)” are standard [20, Equation (11.4.10)]
g =1"1j1(0). g3 =17 ju(t) — 3t 2 ja(0),
95 = t71j1(t) — 61 2j(t) + 1563 j5(r),
92 =171 j,(1), g1 =t"1ja(t) — 372 j3(1),
wherej, (x) = (37/x)J,41/2(x) is a spherical Bessel function. Hence
bz = U1 Wy + 2 W + vaWes + vaWis + s Wia),

whereyy = a3 + o + as, y2 = —3(as + 205), y3 = 1505, y4 = a1 + a2, ys = —3az and
l o
W (o) = = / t Tu(rot) ju(t) dt, 0<ro <1l
T Jo

Ww! is a Weber—Schafheitlin integral [20, Equation 11.4.34]; it can be expressed in terms

of a hypergeometric function. In all the cases of interest to us, the hypergeometric function
reduces to a polynomial

W(:)Ll = %(2 - rg),



432 P.A. Martin
W, = 135(8 — 8rg + 3rg),

Ws = 155(16 — 2415 + 181 — 5r0),
Wiy = ro(4— 3rf),
W = 5eer0(8 — 12/8 + 5r3).
Hence, we find thak, is a sextic polynomial given by

ba(ro) = U(po + p1rd + parg + pard),

where
Po= = — Zc+ 22
p1= —3% - é—ZC—I- %‘Cz’
p2 = 58—1326 + %91662,
p3 = —%;JZCZ.

We can now use (28) to calculate the second-order correction to the added mass. The result

My = Sp(po+ &p1+ 2p2+ 155P3)

- oG- Fo+ S )

which gives (2); here, we have used

/zmaﬁj;m: m!T'(3/2)
0

20 (m +5/2)

Whenc = 0, the result (30) agrees with the known exact result for a spherical cap [2]
when the cap is shallow; see [8] for more details. Another interesting case-ig, so that
f(0) = f(1) = 0; thenM, = $2p. Also, whenc = £, M, takes its minimum value of
—%935 ~ —0.-05. Note also thads, vanishes for two positive values of approximately B
and 16; at these values, the correction to the added mass is fourth orger in

Finally, we can compute the second-order correction By substitutingb, in (27), and

evaluating the integrals, we find that

wo(r) = —(U/7)V1 — r2(Wo + War? + Wor + War®), (31)

where

_ 2 211, 140112
Wo = 5 — 555¢ + 2a10¢

_ 14 9337 2
Wi = —§ — 75¢ + 2540
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_ 83 1215 2
W2 = 250¢ + 11025

_ 1032
W3 = —f560¢"

6. Discussion

In this paper, we have presented a perturbation method for calculating axisymmetric potential
flow past a rippled disc. The method is general and takes proper account of the edge behaviour.
At each perturbation order, one has to solve a one-dimensional hypersingular integral equa-
tion, Lw, = b,; the operatotL corresponds to the unperturbed (flat) disc. The basic solution
(wp) is the solution for flow past a flat disc. The first-order correction) (s identically zero.

For the second-order correctiom), the main difficulty is in calculating,; this, in turn, is
centred on the calculation of

_ [0 — )

r —rg

A

This can be done for polynomigl; our explicit calculations are for quartit. It seems that,
although these calculations are tedious, they could be mechanised using a computer algebra
package, and then one could obtain results for high-order polynomial approximations to quite
general smooth rippled surfaces.

Finally, let us make a few remarks gron-axisymmetridlow past a rippled disc. Thus,
suppose that

¢o(x,y,z) = U(x sin B — z cosB)
so thatg = 0 gives the axisymmetric problem. Hence
b(x,y) = U cosB + &U sin Bf'(r) cosé.

The first term gives an axisymmetric contributionit The second term gives a first-order
correction tow, namelys w1 (r) cos® where [8]

-4 . L w)de
wl(r)=7Ur Slnﬁ/r ﬁ
and
t .2 pr
v =1 [ ELO%
tJo Vt2—r2

This does not give a first-order correctioni but it does give a second-order correction

[8]

1
M, = — (7;]—'()) Siﬂﬁ/o wy(r) f'(r)r dr

1
%sﬁﬂ/fwmﬁm
0
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where we have substituted far, and interchanged the order of integration. For the qudttic
given by (29), we have

() = 2°(1— 2er?)

and
M, = i—gp sir? B(1 — %c + i—gcz).

Hence, correct to second ordersinwe find that
M = M, cos B + e2M,

whereM, is the axisymmetric result given by (2).

Appendix. The kernel L(ro, r)

The kernelL is defined by (12) in terms @K which is itself defined by (8). We have
N(g) = (—F' cos6,—F'sin6,1) and N(p) = (—Fy cos6y, —F sin by, 1),
in terms of Cartesian components, whéfe= F'(r) and F§ = F'(rp). Hence
N(p)-N(q) = 14 F'Fy cos6 — 6),
N(q)- Ry =F — Fo— F'{r —ro cos(0 — 6o)},
N(p)-R1=F — Fy+ Fi{ro— r co90 — 6p)}
and
(N(q) - R(N(p) - R1) = A+ B cod0 — o) + C cos 26 — bo),
where, 8 andC are defined by (15), (16) and (17), respectively. Thus
L=+ FFI;—3{AIL+ BI} + CI2,
where

" = f R;™ cosn(f — 6p) do

-7

2/71 cosng dp
o {12+ 78+ (F — Fo)2 — 2rro cos /2’

In the denominator, replace coy 2 cog %(p — 1, and then change the integration variable
usingy = 7 — 26. The result is

1" = 227" (=1)" (rro) ™21 (),

wherex is defined by (18) and’. (x) is defined by (14), whence (13) follows.
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