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On the added mass of rippled discs
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Abstract. The problem of three-dimensional potential flow past a thin rigid screen is reduced to a hypersingular
boundary integral equation. This equation is then projected onto a flat reference screen, which is taken to be a
circular disc. Solutions are obtained for screens that are axisymmetric perturbations from the disc, so that the
screen is rippled concentrically. The added mass is calculated for axisymmetric flow past such screens, correct to
second order.
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1. Introduction

Lamb’sHydrodynamicsgives the added mass of a flat circular disc as [1, Section 108]

M0 = 8
3ρa3, (1)

where the disc has radiusa and is moving perpendicular to its plane through an incompressible
inviscid fluid of densityρ. Herein, we calculate corrections toM0 when the disc is perturbed
out of its plane into a wrinkled surface�. Specifically, we considerrippled discs, meaning
that the disc perturbation is axisymmetric. Thus,� is given by

�: z = εf (r), 06 r 6 1, −π 6 θ < π,

where(r, θ, z) are cylindrical polar coordinates,f is a given smooth function of one variable,
andε is a small dimensionless parameter. We suppose that the screen� translates with con-
stant speedU along thez-axis, so that the resulting boundary-value problem for a velocity
potentialφ is axisymmetric. (Equivalently, we can hold� fixed in a uniform flow in the
negativez-direction.)

It turns out that the added mass is given by

M = M0+ ε2M2+ · · · ,

for any wrinkled disc� (not merely rippled discs) when� translates along thez-axis. (For
other translation directions, this result remains true for rippled discs, but, in general, the cor-
rection toM0 is first order inε.) Consequently, we have to work to second order if we want
to obtain a non-trivial correction. We shall develop a method for carrying out this calculation,
and present detailed results for quartic surfaces given by

z = 1
2ε

2r2(1− 1
2cr

2), 06 r 6 1, −π 6 θ < π,
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wherec is a parameter. For this two-parameter family of surfaces, we find that

M = 8
3ρ{1+ 1

20ε
2(3− 39

7 c + 97
42c

2)}, (2)

with an error ofO(ε4). In particular, whenc = 0, we recover a result in agreement with the
exact solution due to Collins [2] for a spherical cap. The generalization of (2) for translations
in other directions is given in Section 6.

There are other methods in the literature with a similar general aim. However, these are
limited to first-order calculations (which are either trivial or can be performed explicitly for
any f ) or they are defective in some way. To put these remarks in context, let us begin by
recalling that the classical problem of potential flow past a flat circular disc can be solved
exactly by the method of separation of variables in oblate spheroidal coordinates [1] or by
recasting the problem as a mixed boundary-value problem in a half-spacez > 0 [3]. Attempts
have been made to adapt the latter methodology to problems for which� is a non-planar
perturbation of a circular discD.

Jansson [4] imagined� to be a piece of an infinite interface separating two half-spaces,
and then perturbed this transmission problem about the flat interface. (This is analogous to
the theory of small-amplitude water waves [5, Chapter 2] and to the theory of scattering by
slightly rough surfaces [6, Chapter 3].) However, the behaviour of the solution near the edge
of � induces spurious singularities at the edge ofD.

Beom and Earmme [7] began with assumed representations forφ, namely

φ =
∫ ∞

0
A±(ξ)J0(ξr) e∓ξz dξ for ± z > εf, (3)

motivated by the use of such representations for flat discs [3, Chapter 3]. However, we can see
that there will be points near� for which one of (3) will diverge.

In a previous paper [8], we began be reducing the exact boundary-value problem to a
hypersingular integral equation for [φ], the discontinuity in the potential across�. We rewrote
this equation by projecting onto the unperturbed (reference) surface, which is the discD.
This is an exact reformulation of the original boundary-value problem. Next, we introduced
perturbation expansions, leading to a sequence of hypersingular boundary integral equations
of the formHwn = bn where

[φ] = w0+ εw1+ ε2w2+ · · ·

andH corresponds to potential flow past a rigid circular disc. We derived an explicit closed-
form expression for the first-order correctionw1. We also derived explicit results forw0, w1

andw2 for two particular geometries, namely, an inclined flat elliptical screen and a spherical
cap. We calculated the added mass for these flows, and found agreement with known exact
solutions.

The calculations in [8] are based on two-dimensional integral equations, and do not assume
any symmetries in the geometry or the ambient flow. However, the second-order calculations
are difficult. In this paper, we investigate axisymmetric problems with similar methods, in or-
der to see whether this restricted class of problems allows second-order calculations to proceed
more readily. The axial symmetry leads to one-dimensional hypersingular integral equations
with kernels involving complete elliptic integrals. Their analysis is quite different from that
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described in [8]; in particular, we make essential use of certain integral representations of the
complete elliptic integrals.

A second motivation for this study is as a model for other more complicated but more
important physical applications. Thus, the basic methodology (namely, formulate an exact
boundary integral equation, project exactly onto a reference surface andthen introduce a
regular perturbation expansion) has wide applicability, and it will succeed whenever one can
solve the underlying boundary integral equation for the reference surface. For example, we
can cite problems of Stokes flow [9, 10], where small obstacles are immersed in a viscous
fluid (so that the Reynolds number is small); a lengthy analysis of such a flow past a per-
turbed sphere is given in [9, Section 5-9]. For another example, we can cite crack problems in
elasticity theory; these are important because they arise in theories of crack stability and quasi-
static propagation. Applications of the methodology described herein to problems involving
perturbed penny-shaped cracks are currently being made. In-plane perturbations of circular
discs and cracks are analysed in [11, 12].

2. Formulation

Let � be a thin rigid screen, defined by

�: z = F(x, y), (x, y) ∈ D,

where(x, y, z) are Cartesian coordinates,D is theunit discin thexy-plane, andF is a given
smooth function; later, we shall restrictF to be a function ofr = √x2 + y2. The problem is
to solve Laplace’s equation

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= 0,

in the unbounded region exterior to�, subject to

∂φ

∂n
+ ∂φ0

∂n
= 0 on � (4)

andφ = O(R−1
3 ) asR3 →∞, whereR2

3 = r2 + z2, φ0 is the velocity potential of the given
ambient flow, and∂/∂n denotes normal differentiation. We also require thatφ is bounded
everywhere in the flow.

It is known thatφ can be represented as a distribution of normal dipoles

φ(P ) = 1

4π

∫
�

[φ(q)] ∂

∂nq

G(P, q) dSq, (5)

whereG(P, q) = |r − q|−1, q ∈ � has position vectorq with respect to the originO, andP

has position vectorr. Furthermore, denote the two sides of� by �+ and�−, and define the
unit normal vector on�,n, to point from�+ into the fluid. Then, we define the discontinuity
in φ across� by

[φ(q)] = lim
Q→q+

φ(Q)− lim
Q→q−

φ(Q),
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whereq ∈ �, q± ∈ �± andQ is a point in the fluid.
Applying the boundary condition (4) to (5), we obtain

1

4π

∫
�

× [φ(q)] ∂2

∂np∂nq

G(p, q) dSq = − ∂φ0

∂np

, p ∈ �, (6)

which is the governing hypersingular integral equation for [φ]. The integral in (6) must be
interpreted in the finite-part sense. Also, (6) must be solved subject to[φ(q)] = 0 for all
q ∈ ∂�, the edge of�. More information on (6) and its derivation, and on two-dimensional
finite-part integrals can be found in [12] and [13].

Let us define a normal vector to� by

N =
(−∂F

∂x
,
−∂F

∂y
, 1
)

,

whencen = N/|N | is a unit normal vector; this effectively specifies�+. Suppose thatp ∈ �

andq ∈ � are at(x0, y0, z0) and(x, y, z), respectively. Let

[φ(q)] = w(x, y).

Then, we can project (6) ontoD. Thus, usingz = F(x, y) andz0 = F(x0, y0), we rewrite (6),
exactly, as an integral equation overD [8],

1

4π

∫
D

× K(x0, y0; x, y)w(x, y) dA = b(x0, y0), (x0, y0) ∈ D, (7)

where dA = dx dy,

K = R−3
1 {N(p) ·N(q)} − 3R−5

1 (N(p) · R1)(N(q) ·R1), (8)

R1 = (x − x0, y − y0, F (x, y) − F(x0, y0)), R1 = |R1|, and

b(x, y) = −N · gradφ0. (9)

Equation (7) is to be solved subject to the edge conditionw(x, y) = 0 for r = 1.
In the sequel, we take

φ0 = −Uz whence b = U.

We will then calculate an approximation tow by solving (7). The added mass itself is given
exactly by [8]

M = − ρ

U

∫
D

w(x, y) dA; (10)

this formula comes by noting that, by definition,T = 1
2MU2, whereT is the kinetic energy

of the fluid motion [1, Section 44]. Exact solutions forM are known when� is a flat circular
disc, a flat elliptical screen and a spherical cap; see [8] for references.
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3. Axisymmetric problems: rippled discs

Assume that� is given by

�: z = F(r), 06 r 6 1, −π 6 θ < π.

Thus� is circularly symmetric - it is rippled. Asφ0 = −Uz, the solutionw is independent
of θ

w(x, y) = w(r).

Then, the two-dimensional integral Equation (7) becomes

1

4π

∫ 1

0
× L(r0, r)w(r)r dr = U, 06 r0 < 1. (11)

This is a one-dimensional hypersingular integral equation forw(r); it is to be solved subject
to w(1) = 0. The integral in (11) is a Hadamard finite-part integral. The kernel is given by

L(r0, r) =
∫ π

−π

K(x0, y0; x, y) dθ, (12)

wherex = r cosθ, y = r sin θ, x0 = r0 cosθ0 andy0 = r0 sin θ0.
It is well known that the standard boundary integral equations of axisymmetric potential

theory can be reduced to one-dimensional integral equations in which the kernels involve
complete elliptic integrals [14, 15]. The present situation is no exception, as we shall see.

In the Appendix, it is shown that

L = 1
2κ

3(rr0)
−3/2(I 0

3 − F ′F ′0I
1
3 )− 3

8κ
5(rr0)

−5/2(AI 0
5 −BI 1

5 + CI 2
5 ), (13)

whereF ≡ F(r), F0 ≡ F(r0), F
′ ≡ F ′(r), F ′0 ≡ F ′(r0),

I n
m ≡ I n

m(κ) =
∫ π/2

0

cos 2nθ dθ

(1− κ2 sin2 θ)m/2
, (14)

A = (F − F0)
2+ (F − F0)(F

′
0r0− F ′r)− 3

2F
′F ′0rr0, (15)

B = (F − F0)(F
′r0 − F ′0r)+ F ′F ′0(r

2 + r2
0), (16)

C = −1
2F
′F ′0rr0 (17)

and

κ2 = 4rr0

(r + r0)2+ (F − F0)2
; (18)

note that

κ2
6

4rr0

(r + r0)
2
= 4rr0

(r − r0)
2+ 4rr0

6 1,
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with κ2 = 1 only whenr = r0.
The integralsI n

m can be expressed in terms of complete elliptic integrals whenm is an odd
integer [16, Section 2.58]

I 0
3 (k) = k′−2E(k),

I 1
3 (k) = k′−2(1− 2k−2)E(k)+ 2k−2K(k),

I 0
5 (k) = 2

3k
′−4(2− k2)E(k)− 1

3k
′−2K(k),

I 1
5 (k) = −2

3(kk′2)−2(1− k2+ k4)E(k)+ 1
3(kk′)−2(2− k2)K(k),

I 2
5 (k) = −2

3(kk′)−4(8− 12k2 + 2k4+ k6)E(k)+ 1
3(k

2k′)−2(16− 16k2 − k4)K(k),

wherek′2 = 1− k2 and the complete elliptic integralsE andK are defined by

E(k) =
∫ π/2

0
(1− k2 sin2 θ)1/2 dθ and K(k) =

∫ π/2

0
(1− k2 sin2 θ)−1/2 dθ,

respectively.

3.1. THE FLAT DISC

If � is flat and lies parallel to thexy-plane,F = F0. Hence,F ′ = F ′0 = 0,A = B = C = 0
andκ = k, where

k2 = 4rr0

(r + r0)2
. (19)

Thus the kernelL simplifies to

L0(r0, r) ≡ 1
2k

3(rr0)
−(3/2)I 0

3 (k) = 4

r + r0

E(k)

(r − r0)2
(20)

and the integral equation (11) reduces to

1

π

∫ 1

0
× rE(k)

r + r0

w(r) dr

(r − r0)2
= U, 06 r0 < 1, (21)

with w(1) = 0; here, we have used

k′2 = 1− k2 = (r − r0)
2

(r + r0)2
.

The hypersingular integral equation (21) for axisymmetric potential flow past a rigid flat
circular disc seems to be new, although it can be extracted from [15, Equation (6)]. (It also
yields the crack-opening displacementw for a pressurized penny-shaped crack.)

As r → r0, k → 1 andE(1) = 1, so thatrL0(r0, r) exhibits the basic hypersingularity in
one dimension, namely(r − r0)

−2.
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The flat-disc integral equation (21) can be solved exactly, using several different methods.
Thus, if we replace the constantU on the right-hand side by a given functionb(r0), we have

w(r) = −4

π

∫ 1

r

1√
t2 − r2

∫ t

0

b(s)s ds√
t2− s2

dt, (22)

for a derivation of this result, see, for example, [17] or [18]. In particular, whenb(r) = U , we
obtainw(r) = −(4/π)U

√
1− r2.

3.2. THE SINGULARITY OF THE KERNEL

We are interested in the singularity of the kernelL(r0, r) as|r − r0| → 0, for anyF(r). Let
us define

R = r − r0 and 3 = (F − F0)/R,

so that3 is bounded for allR. In particular,3→ F ′0 asr → r0. It follows that

κ ′2 ≡ 1− κ2 = R2(1+32)

(r + r0)
2+ R232

,

whenceκ ′ → 0 asR → 0. In this limit, the complete elliptic integralK is singular:K(κ) ∼
log(4/κ ′) asκ ′ → 0.

A cursory glance atL suggests a very strong singularity, due to the terms containingκ ′−4

in I n
5 (κ). However, various cancellations occur. To see this, all quantities must be expanded

for smallR. Expanding aboutr0, we haveκ ′2 ∼ 1
4β0r

−2
0 R2 asR → 0, whereβ0 = 1+ F ′20 .

For the first term in (13), we have

1
2κ

3(rr0)
−(3/2)(I 0

3 − F ′F ′0I
1
3 ) ∼ 1

2r
−3
0 β0κ

′−2

∼ (2/r0)R
−2 as R→ 0, (23)

thus, this term reduces to the flat-disc kernel for smallR, as seen in (20).
For the second term in (13), we have

A ∼ −3
2D + R2r0F

′
0Ã,

B ∼ −2D + R2r0F
′
0B̃,

C ∼ −1
2D + R2r0F

′
0C̃

asR→ 0, where

D = r0F
′
0{r0F

′
0 + R(F ′0+ r0F

′′
0 )},

Ã = −5
2F
′′
0 − 3

4r0F
′′′
0 ,

B̃ = 3F ′′0 + r0F
′′′
0 ,

C̃ = −1
2F
′′
0 − 1

4r0F
′′′
0 ,
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F ′′0 = F ′′(r0) andF ′′′0 = F ′′′(r0); thus,D, which is common toA,B andC, contains all the
terms inR0 andR1. Then

AI 0
5 −BI 1

5 + CI 2
5 ∼ DQ1+ R2r0F

′
0(ÃI 0

5 − B̃I 1
5 + C̃I 2

5 )

= DQ1+ R2r0F
′
0(F

′′
0 Q2+ 1

2r0F
′′′
0 Q1),

where

Q1 = −3
2I

0
5 − 2I 1

5 − 1
2I

2
5

= 8
3κ
−4(1+ κ2)E(κ)− 4

3κ
−4(2+ κ2)K(κ),

Q2 = −5
2I

0
5 − 3I 1

5 − 1
2I

2
5

= 2
3(κ

2κ ′)−2(4+ κ2− 6κ4)E(κ)− 2
3κ
−4(4+ 3κ2)K(κ),

whenceQ1 ∼ 4 logκ ′ andQ2 ∼ −2
3κ
′−2 asκ ′ → 0. It follows that the second term in (13) has

a logarithmic singularity, so thatL has a dominant singularity given by (23), with additional
(weaker) logarithmic terms.

4. Slightly rippled discs

The hypersingular integral equation (11) is exact. It is valid for axisymmetric flow past any
rippled disc, and it could be solved numerically. Here, we suppose that the ripples are small,
and write

F(r) = εf (r),

whereε is a small dimensionless parameter andf is independent ofε. Then we look for
approximate solutions of (11), valid for smallε.

It turns out that

L = L0+ ε2L2+O(ε4) as ε→ 0, (24)

whereL0 is the flat-disc kernel given by (20) andL2 is given by (25) below. To obtain (24),
we start by setting

3 = ελ with λ = f (r)− f (r0)

R
and R = r − r0.

Next, writeL = L(1) + L(2) where

L(1) = 1
2κ

3(rr0)
−3/2I 0

3 (κ) and L(2) = L− L(1).

For smallε, we have

κ = k − ε2δ +O(ε4) with δ = 1
8k

3(f − f0)
2/(rr0),
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wheref ≡ f (r), f0 ≡ f (r0), κ is defined by (18) andk is defined by (19).L(2) is quadratic
in F(r) andF ′(r), whence its contribution toL2 will come by replacingF by f andκ by k.
ForL(1), we must take account of the difference betweenκ andk; this gives

L(1)(r0, r) = L0(r0, r)− ε2(f − f0)
2k5

16k′2(rr0)
5/2

{
2

k′2
(2− k2)E(k)−K(k)

}
.

Finally, simplification gives

L2(r0, r) = −2

r + r0

{
S1E(k)

(r − r0)
2
+ S2E(k)

(r + r0)
2
+ S3K(k)

(r + r0)
2

}
, (25)

where

S1 = 6λ2− 4λ(f ′ + f ′0)+
r2 + r2

0

rr0
f ′f ′0,

S2 = 6λ2− 4λ(r + r0)

(
f ′ − f ′0
r − r0

)
,

S3 = −3λ2+ λ(r + r0)

(
f ′r0 + f ′0r

rr0

)
− (r + r0)

2

rr0
f ′f ′0,

f ′ ≡ f ′(r) andf ′0 ≡ f ′(r0). Note that the apparent hypersingularity in (25) is removable
becauseS1 = O(R2) asR→ 0.

Having expanded the kernel for smallε, we next expandw as

w(r) = w0+ εw1+ ε2w2+ · · · .
Then, (11) gives

Lw0 = U, Lw1 = 0, and Lw2 = b2,

whereL, defined by

(Lw)(r0) = 1

4π

∫ 1

0
× L0(r0, r)w(r)r dr = 1

π

∫ 1

0
× rE(k)

r + r0

w(r) dr

(r − r0)2
,

is the basic hypersingular operator for axisymmetric potential flow past a rigid circular disc

b2 = −L2w0 and (L2w)(r0) = 1

4π

∫ 1

0
L2(r0, r)w(r)r dr.

It follows immediately that

w0(r) = −
(

4

π

)
U
√

1− r2 and w1 = 0.

Forw2, we can foresee that the most difficult part of the calculation will involve the evaluation
of b2 = −L2w0. In the next section, we describe this calculation for a certain quartic sur-
facef .
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Finally, we can calculate the second-order correction to the added mass from (10)

M2 = −2πρ

U

∫ 1

0
w2(r)r dr. (26)

But the solution ofLw2 = b2 is given by (22) as

w2(r) = −4

π

∫ 1

r

1√
t2− r2

∫ t

0

b2(s)s ds√
t2− s2

dt. (27)

Substituting this expression in (26), and interchanging the order of integration twice, we obtain

M2 = 8ρ

U

∫ 1

0
s
√

1− s2b2(s) ds, (28)

which avoids an explicit calculation ofw2.

5. A rippled quartic surface

Consider a quartic surface given by

z = εf (r) with f (r) = 1
2r

2(1− 1
2cr

2), 06 r 6 1, −π 6 θ < π, (29)

wherec is a parameter. Thusf ′ = r − cr3,

λ = 1
2(r + r0){1− 1

2c(r
2 + r2

0)},

S1 = (r − r0)
2{12 + 1

2c(r
2 + 4rr0 + r2

0)− 1
8c

2(r2 + r2
0)(5r2 + 12rr0 + 5r2

0)},

S2 = (r + r0)
2{−1

2 + 1
2c(3r2 + 4rr0 + 3r2

0)− 1
8c

2(r2 + r2
0)(5r2 + 8rr0 + 5r2

0)},

S3 = (r + r0)
2{−3

4 + 3
4c(r

2 + r2
0)+ 1

16c
2(r4 − 14r2r2

0 + r4
0)},

whence

L2(r0, r) = −4c{1− 5
8c(r

2 + r2
0)}(r + r0)E(k)

+{32 − 3
2c(r

2 + r2
0)− 1

8c
2(r4 − 14r2r2

0 + r4
0)}(r + r0)

−1K(k).

The next step is to evaluateb2; we have

b2(r0) = −(L2w0)(r0) = U

π2

∫ 1

0
L2(r0, r)

√
1− r2r dr.

The difficulty is thatr occurs throughk (defined by (19)) in the argument of the complete
elliptic integrals. We proceed indirectly by using certain integral representations [19, p. 249]

K(k)

r + r0
= 1

2π

∫ ∞
0

J0(rt)J0(r0t) dt,
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(r + r0)E(k) = (r2+ r2
0)

K(k)

r + r0
− πrr0

∫ ∞
0

J1(rt)J1(r0t) dt,

whereJn(x) is a Bessel function. These give

L2 = π(α1r + α2r
3)

∫ ∞
0

J1(rt)J1(r0t) dt + π(α3+ α4r
2+ α5r

4)

×
∫ ∞

0
J0(rt)J0(r0t) dt,

where

α1 = 4cr0(1− 5
8cr

2
0), α2 = −5

2c
2r0,

α3 = 1
16(12− 44cr2

0 + 19c2r4
0), α4 = 1

8(−22c+ 27c2r2
0)

andα5 = 19
16c

2. So, if we define

Jm
n (t) =

∫ 1

0
Jn(rt)r

m
√

1− r2 dr,

we see that

b2(r0) = U

π

∫ ∞
0

J1(r0t)(α1J
2
1 + α2J

4
1) dt

+U

π

∫ ∞
0

J0(r0t)(α3J
1
0 + α4J

3
0 + α5J

5
0) dt.

The integralsJm
n are standard [20, Equation (11.4.10)]

J1
0 = t−1j1(t), J3

0 = t−1j1(t)− 3t−2j2(t),

J5
0 = t−1j1(t)− 6t−2j2(t)+ 15t−3j3(t),

J2
1 = t−1j2(t), J4

1 = t−1j2(t)− 3t−2j3(t),

wherejn(x) = (1
2π/x)Jn+1/2(x) is a spherical Bessel function. Hence

b2 = U(γ1W
1
01+ γ2W

2
02+ γ3W

3
03+ γ4W

1
12+ γ5W

2
13),

whereγ1 = α3+ α4+ α5, γ2 = −3(α4+ 2α5), γ3 = 15α5, γ4 = α1+ α2, γ5 = −3α2 and

W l
mn(r0) = 1

π

∫ ∞
0

t−lJm(r0t)jn(t) dt, 06 r0 < 1.

W l
mn is a Weber–Schafheitlin integral [20, Equation 11.4.34]; it can be expressed in terms

of a hypergeometric function. In all the cases of interest to us, the hypergeometric function
reduces to a polynomial

W1
01 = 1

8(2− r2
0),

168231.tex; 4/09/1996; 7:16; p.11



432 P.A. Martin

W2
02 = 1

128(8− 8r2
0 + 3r4

0),

W3
03 = 1

1536(16− 24r2
0 + 18r4

0 − 5r6
0),

W1
12 = 1

32r0(4− 3r2
0),

W2
13 = 1

256r0(8− 12r2
0 + 5r4

0).

Hence, we find thatb2 is a sextic polynomial given by

b2(r0) = U(p0+ p1r
2
0 + p2r

4
0 + p3r

6
0),

where

p0 = 3
16 − 11

64c + 19
512c

2,

p1 = − 3
32 − 23

64c + 155
1024c

2,

p2 = 83
512c + 491

4096c
2,

p3 = − 515
8192c

2.

We can now use (28) to calculate the second-order correction to the added mass. The result
is

M2 = 8
3ρ(p0+ 2

5p1+ 8
35p2+ 16

105p3)

= ρ(2
5 − 26

35c + 97
315c

2), (30)

which gives (2); here, we have used∫ 1

0
s2m+1

√
1− s2 ds = m!0(3/2)

20(m+ 5/2)
.

Whenc = 0, the result (30) agrees with the known exact result for a spherical cap [2]
when the cap is shallow; see [8] for more details. Another interesting case isc = 2, so that
f (0) = f (1) = 0; thenM2 = 46

315ρ. Also, whenc = 117
97 ,M2 takes its minimum value of

− 163
3395 ' −0·05. Note also thatM2 vanishes for two positive values ofc, approximately 0·8

and 1·6; at these values, the correction to the added mass is fourth order inε

Finally, we can compute the second-order correctionw2. By substitutingb2 in (27), and
evaluating the integrals, we find that

w2(r) = −(U/π)
√

1− r2(W0+W1r
2 +W2r

4+W3r
6), (31)

where

W0 = 2
3 − 211

225c + 14011
44100c

2,

W1 = −1
6 − 41

75c + 9337
29400c

2,
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W2 = 83
450c + 1215

11025c
2,

W3 = − 103
1960c

2.

6. Discussion

In this paper, we have presented a perturbation method for calculating axisymmetric potential
flow past a rippled disc. The method is general and takes proper account of the edge behaviour.
At each perturbation order, one has to solve a one-dimensional hypersingular integral equa-
tion, Lwn = bn; the operatorL corresponds to the unperturbed (flat) disc. The basic solution
(w0) is the solution for flow past a flat disc. The first-order correction (w1) is identically zero.
For the second-order correction (w2), the main difficulty is in calculatingb2; this, in turn, is
centred on the calculation of

λ = f (r)− f (r0)

r − r0
.

This can be done for polynomialf ; our explicit calculations are for quarticf . It seems that,
although these calculations are tedious, they could be mechanised using a computer algebra
package, and then one could obtain results for high-order polynomial approximations to quite
general smooth rippled surfaces.

Finally, let us make a few remarks onnon-axisymmetricflow past a rippled disc. Thus,
suppose that

φ0(x, y, z) = U(x sin β − z cosβ)

so thatβ = 0 gives the axisymmetric problem. Hence

b(x, y) = U cosβ + εU sin βf ′(r) cosθ.

The first term gives an axisymmetric contribution toM. The second term gives a first-order
correction tow, namelyεw1(r) cosθ where [8]

w1(r) = −4

π
Ur sin β

∫ 1

r

9(t) dt

t
√

t2− r2

and

9(t) = 1

t

∫ t

0

r2f ′(r) dr√
t2− r2

.

This does not give a first-order correction toM, but it does give a second-order correction
[8]

M̃2 = −
(πρ

U

)
sin β

∫ 1

0
w1(r)f

′(r)r dr

= 4ρ sin2 β

∫ 1

0
{9(t)}2 dt,
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where we have substituted forw1 and interchanged the order of integration. For the quarticf ,
given by (29), we have

9(t) = 2
3t

2(1− 4
5ct

2)

and

M̃2 = 16
45ρ sin2 β(1− 8

7c + 16
45c

2).

Hence, correct to second order inε, we find that

M = Ma cosβ + ε2M̃2,

whereMa is the axisymmetric result given by (2).

Appendix. The kernel L(r0, r)

The kernelL is defined by (12) in terms ofK which is itself defined by (8). We have

N(q) = (−F ′ cosθ,−F ′ sin θ, 1) and N(p) = (−F ′0 cosθ0,−F ′0 sin θ0, 1),

in terms of Cartesian components, whereF ′ ≡ F ′(r) andF ′0 ≡ F ′(r0). Hence

N(p) ·N(q) = 1+ F ′F ′0 cos(θ − θ0),

N(q) ·R1 = F − F0− F ′{r − r0 cos(θ − θ0)},
N(p) ·R1 = F − F0+ F ′0{r0− r cos(θ − θ0)}

and

(N(q) ·R1)(N(p) · R1) = A+B cos(θ − θ0)+ C cos 2(θ − θ0),

whereA,B andC are defined by (15), (16) and (17), respectively. Thus

L = Ĩ 0
3 + F ′F ′0Ĩ

1
3 − 3{AĨ 0

5 +B Ĩ 1
5 + C Ĩ 2

5 },
where

Ĩ n
m =

∫ π

−π

R−m
1 cosn(θ − θ0) dθ

= 2
∫ π

0

cosnϕ dϕ

{r2+ r2
0 + (F − F0)2− 2rr0 cosϕ}m/2

.

In the denominator, replace cosϕ by 2 cos2 1
2ϕ − 1, and then change the integration variable

usingϕ = π − 2θ . The result is

Ĩ n
m = 22−mκm(−1)n(rr0)

−m/2I n
m(κ),

whereκ is defined by (18) andI n
m(κ) is defined by (14), whence (13) follows.
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